Найти начальную и конечную скорости камня, брошенного горизонтально с высоты 5 м, если по горизонтали...

физика механика кинематика горизонтальный бросок начальная скорость конечная скорость расстояние высота
0

Найти начальную и конечную скорости камня, брошенного горизонтально с высоты 5 м, если по горизонтали он пролетел 10 м

avatar
задан 7 месяцев назад

3 Ответа

0

Для решения данной задачи нам необходимо воспользоваться уравнениями кинематики. Известно, что вертикальное движение камня описывается уравнением свободного падения:

h = v0t + (1/2)gt^2,

где h - высота (5 м), v0 - начальная вертикальная скорость (0, так как камень брошен горизонтально), g - ускорение свободного падения (9,8 м/с^2), t - время полета.

Так как камень прошел 10 м по горизонтали, то можно записать:

s = vxt,

где s - горизонтальное расстояние (10 м), vx - горизонтальная скорость.

Так как горизонтальная скорость постоянна, то vx = s/t.

Используя данные из обоих уравнений и зная, что время полета одинаково как для вертикального, так и для горизонтального движения, можно найти начальную и конечную скорости камня.

Решая систему уравнений, можно найти, что начальная скорость камня равна 14 м/с, а конечная скорость также будет 14 м/с.

avatar
ответил 7 месяцев назад
0

Для решения задачи о камне, брошенном горизонтально, используем законы физики, а именно кинематические уравнения для равноускоренного движения.

  1. Определение времени полёта камня: Так как движение камня в вертикальном направлении - это свободное падение, можно использовать следующее уравнение для вычисления времени падения: [ y = \frac{1}{2} g t^2 ] где ( y ) - высота падения (5 м), ( g ) - ускорение свободного падения (примерно ( 9.81 \, \text{м/с}^2 )), а ( t ) - время падения. Подставляем известные значения и решаем относительно ( t ): [ 5 = \frac{1}{2} \times 9.81 \times t^2 \implies t^2 = \frac{10}{9.81} \implies t = \sqrt{\frac{10}{9.81}} \approx 1.01 \, \text{с} ]

  2. Определение начальной горизонтальной скорости камня (( v{x0} )): Так как камень пролетел горизонтальное расстояние 10 м за время ( t \approx 1.01 \, \text{с} ), можно использовать формулу равномерного движения: [ x = v{x0} \times t ] Подставляем известные значения: [ 10 = v{x0} \times 1.01 \implies v{x0} = \frac{10}{1.01} \approx 9.9 \, \text{м/с} ]

  3. Определение конечной скорости камня: Конечная скорость камня (( \vec{v} )) является векторной суммой его горизонтальной (( v{x0} )) и вертикальной (( v{y} )) скоростей в момент удара о землю. Вертикальная скорость в момент удара: [ v{y} = g \times t = 9.81 \times 1.01 \approx 9.9 \, \text{м/с} ] Используя теорему Пифагора, найдём величину конечной скорости: [ v = \sqrt{v{x0}^2 + v_{y}^2} = \sqrt{9.9^2 + 9.9^2} = \sqrt{2 \times 9.9^2} = 9.9 \times \sqrt{2} \approx 14.0 \, \text{м/с} ]

Таким образом, начальная скорость камня, брошенного горизонтально, составляет примерно 9.9 м/с, а конечная скорость при ударе о землю - примерно 14.0 м/с.

avatar
ответил 7 месяцев назад
0

Начальная скорость равна 10 м/с, конечная скорость равна 14 м/с.

avatar
ответил 7 месяцев назад

Ваш ответ

Вопросы по теме